V. Zubov, On systems of ordinary differential equations with generalized homogenous right-hand sides, Izvestia vuzov. Mathematica, vol.1, pp.80-88, 1958.

H. Hermes, Nilpotent Approximations of Control Systems and Distributions, SIAM Journal on Control and Optimization, vol.24, issue.4, p.731, 1986.
DOI : 10.1137/0324045

L. Rosier, Homogeneous Lyapunov function for homogeneous continuous vector field, Systems & Control Letters, vol.19, issue.6, pp.467-473, 1992.
DOI : 10.1016/0167-6911(92)90078-7

A. Polyakov, D. Efimov, E. Fridman, and W. Perruquetti, On Homogeneous Distributed Parameter Systems, IEEE Transactions on Automatic Control, vol.61, issue.11, pp.3657-3662, 2016.
DOI : 10.1109/TAC.2016.2525925

URL : https://hal.archives-ouvertes.fr/hal-01318134

E. Ryan, Universal stabilization of a class of nonlinear systems with homogeneous vector fields, Systems & Control Letters, vol.26, issue.3, pp.177-184, 1995.
DOI : 10.1016/0167-6911(95)00013-Y

V. Andrieu, L. Praly, and A. Astolfi, Homogeneous Approximation, Recursive Observer Design, and Output Feedback, SIAM Journal on Control and Optimization, vol.47, issue.4, pp.1814-1850, 2008.
DOI : 10.1137/060675861

URL : https://hal.archives-ouvertes.fr/hal-00362707

E. Bernuau, A. Polyakov, D. Efimov, and W. Perruquetti, Verification of ISS, iISS and IOSS properties applying weighted homogeneity, Systems & Control Letters, vol.62, issue.12, pp.1159-1167, 2013.
DOI : 10.1016/j.sysconle.2013.09.004

URL : https://hal.archives-ouvertes.fr/hal-00877148

E. Roxin, On finite stability in control systems, Rendiconti del Circolo Matematico di Palermo, pp.273-283, 1966.
DOI : 10.1007/BF02849435

S. Bhat and D. Bernstein, Finite-Time Stability of Continuous Autonomous Systems, SIAM Journal on Control and Optimization, vol.38, issue.3, pp.751-766, 2000.
DOI : 10.1137/S0363012997321358

J. Coron and L. Praly, Adding an integrator for the stabilization problem, Systems & Control Letters, vol.17, issue.2, pp.89-104, 1991.
DOI : 10.1016/0167-6911(91)90034-C

A. Levant, Homogeneity approach to high-order sliding mode design, Automatica, vol.41, issue.5, pp.823-830, 2005.
DOI : 10.1016/j.automatica.2004.11.029

Y. Orlov, Finite Time Stability and Robust Control Synthesis of Uncertain Switched Systems, SIAM Journal on Control and Optimization, vol.43, issue.4, pp.1253-1271, 2005.
DOI : 10.1137/S0363012903425593

W. Perruquetti, T. Floquet, and E. Moulay, Finite-Time Observers: Application to Secure Communication, IEEE Transactions on Automatic Control, vol.53, issue.1, pp.356-360, 2008.
DOI : 10.1109/TAC.2007.914264

URL : https://hal.archives-ouvertes.fr/inria-00176758

V. G. Boltyanskii, R. V. Gamkrelidze, and L. S. Pontryagin, Towards a theory of optimal processes, Doklady Academii Nauk SSSR, vol.110, issue.1, pp.7-10, 1956.

R. Bellman, The theory of dynamic programming, Bulletin of the American Mathematical Society, vol.60, issue.6, pp.503-515, 1954.
DOI : 10.1090/S0002-9904-1954-09848-8

A. Agrachev and Y. Sachkov, Control Theory from the Geometric Viewpoint, 2004.
DOI : 10.1007/978-3-662-06404-7

A. Polyakov, Quadratic-like stabilizability of homogeneous systems, Conference on Decision and Control, p.2017

M. Kawski, Geometric homogeneity and stabilization, Proc. IFAC Nonlinear Control Symposium, pp.164-169, 1995.
DOI : 10.1016/s1474-6670(17)46822-4

H. Hermes, Homogeneous feedback controls for homogeneous systems, Systems & Control Letters, vol.24, issue.1, pp.7-11, 1995.
DOI : 10.1016/0167-6911(94)00035-T

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, 1983.
DOI : 10.1007/978-1-4612-5561-1

L. Rosier, Etude de quelques problemes de stabilization, 1993.

D. Efimov and W. Perruquetti, Oscillations Conditions in Homogenous Systems, Proc. IFAC NOLCOS Symp, pp.1379-1384, 2010.
DOI : 10.3182/20100901-3-IT-2016.00101

URL : https://hal.archives-ouvertes.fr/hal-00561003

A. Polyakov, J. Coron, and L. Rosier, On finite-time stabilization of evolution equations: A homogeneous approach, 2016 IEEE 55th Conference on Decision and Control (CDC), pp.3143-3148, 2016.
DOI : 10.1109/CDC.2016.7798740

URL : https://hal.archives-ouvertes.fr/hal-01371089

L. Praly, Generalized weighted homogeneity and state dependent time scale for linear controllable systems, Proceedings of the 36th IEEE Conference on Decision and Control, pp.4342-4347, 1997.
DOI : 10.1109/CDC.1997.649536

S. P. Bhat and D. S. Bernstein, Geometric homogeneity with applications to finite-time stability, Mathematics of Control, Signals, and Systems, vol.17, issue.2, pp.101-127, 2005.
DOI : 10.1007/s00498-005-0151-x

A. Poznyak, Advanced Mathematical Tools for Automatic Control Engineers, 2008.